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1)  The goal of this problem is to verify a remark I made in class, namely that the “fast find” data structure for union-find, which in the book (pp. 152-154) is called a ”simple” data structure for union-find, can in fact never beat (by more than a constant factor) the “fast union” data structure, which in the book is called a “better” data structure for union-find, with “further improvements” (book, pp. 155-157).  For definitiveness, I will describe both algorithms here, in a way more-or-less consistent with the descriptions in the book.  We assume that the set elements are the integers 1 through 
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  Each initial (singleton) set containing element
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is named
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 There is a single initialization operation MakeUnionFind
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which initializes the data structure.  After initialization, the operations allowed on the data structure are Find
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j

 which returns the name of the set containing 
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 and Unite 
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 which unites the sets named
[image: image8.wmf]j

and
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 into a single set, named either
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or
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; the implementation gets to choose.  A Unite
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 operation destroys the old sets named
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and 
[image: image14.wmf].
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 (In the application of this data structure to the problem of computing minimum spanning trees, and in many other applications, the actual set names don’t matter; the only thing that matters is being able to tell whether two elements are currently in the same set, or in different sets, by comparing set names.)  

The fast find method maintains an array of
[image: image15.wmf]n

positions which records, for each element, the name of the set containing it.  In addition, the method maintains, for each set name 
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a list of the elements in set
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and the size of the set. Initialization takes 
[image: image18.wmf]()
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time. A Find operation is just a lookup in the set name array, and takes 
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time.  The method performs Unite
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by comparing the sizes of the sets named
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and
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 The set name of the larger set is retained; all elements in the other set have their set name changed and are added to the list of the larger set.  A tie is broken arbitrarily.  As proved in the book (pp. 153-154), a sequence of 
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Unites and 
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intermixed Finds takes
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time, 
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for the Unites and 
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for the Finds (even though a single Unite can take
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k
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time.  Since there can be no more than 
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 Unites, the total time for any sequence of set operations is 
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The fast union method represents each set by a rooted tree whose nodes are its elements.  Each node has a pointer to its parent.  The tree root is the set name; it stores the set size.  Initialization takes
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On

time.  With this structure, Unites (instead of Finds) take
[image: image32.wmf](1)

O

time: to perform a Unite, the method makes the root of the smaller tree point to the root of the larger, and updates the size stored in the surviving root.  A tie in size is broken arbitrarily.  To do a Find
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the method follows parent pointers from
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until reaching a root, say 
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 Then it compresses the Find path by traversing the path again, changing the parent of every node on the path (except the root 
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to be 
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Then it returns
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as the name of the set containing
[image: image39.wmf].
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1a)  We showed in class that the fast union method has almost-constant amortized performance.  Here you are to prove something a little different: on any sequence of Unites and Finds, the fast union method is as fast as the fast find method, to within a constant factor.  Hint: consider the pointer changes made by the fast union method and the array updates (element renamings) done by the fast find method.  Prove that there are at least as many of the latter as of the former, assuming that both methods break ties in set sizes during Unite operations in the same way. 

1b)  Prove that the fast union method takes
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time on any sequence of operations such that all the Unions precede all the Finds.  Use this to construct a class of examples to show that, for every 
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there is a sequence of 
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Unions and 
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intermixed Finds such that the fast find method takes a factor of 
[image: image44.wmf]log

cn

more time than the fast union method, for some suitable positive
[image: image45.wmf].
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2) The goal of this problem is to show that the self-adjusting search trees (splay trees) described in class have an amortized efficiency for any long enough access sequence that is within a constant factor of that of any static search tree, and in particular an optimum tree for the given access sequence (even though the splay method does not know the access sequence in advance, and the static tree can be picked to be the best one for the given access sequence).  The setup is as follows.  Given is an initial 
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 binary search tree and a sequence of m access requests.  Let
[image: image47.wmf]s

be the total time to perform this sequence by doing a binary search in the current search tree to find the desired element, followed by a splay operation that modifies the tree to move the accessed item to the root.  Let 
[image: image48.wmf]T

be any fixed binary search tree on the same ordered set of elements. Let
[image: image49.wmf]t

be the total time to perform the same sequence of accesses on this fixed tree: each access of an element
[image: image50.wmf]j

takes time proportional to the number of nodes on the path in the fixed tree from the root to
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2a) Prove that 
[image: image52.wmf](()),

sOfnt

=+

 where 
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is a function only of 
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and not of 
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 Here is a recommended approach.  The idea is to use the access lemma proved in class, with weights chosen so that the amortized bound for splaying at a node
[image: image56.wmf]j

given by the access lemma is proportional to the depth of
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in 
[image: image58.wmf].

T

  Recall the fundamental equation of potential-based amortized analysis: the total amortized time for a sequence of operations equals the total actual time plus the final potential minus the initial potential.  Recall also the access lemma for splaying: for any fixed assignment of positive weights to the elements, if the potential of a node is defined to be the log of the sum of the weights of its descendants and the tree potential is the sum of the node potentials, then the amortized time of a splay at node
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is 
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where 
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is the total weight and 
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is the individual weight of
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  For each element
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choose 
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where 
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is the depth of
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in the fixed tree
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  Show that 
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 Bound the difference between the initial and final potentials.  (The initial potential is not necessarily zero, and the final potential can be negative, so it is not necessarily the case that the final potential is at least as large as the initial potential.  Put the pieces together.  What is your bound on
[image: image70.wmf]()?
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 2b) (extra credit)  Suppose that only
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out of n elements in the tree are ever accessed.  Prove that 
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 Partial credit for proving
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  Much extra credit for proving (or disproving) that 
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3) Consider the directed graph
[image: image75.wmf]R

whose vertices are the binary trees on
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nodes, with an arc from 
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 to 
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 if there is a single right rotation that transforms 
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 into 
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3a) Prove that
[image: image81.wmf]R

is acyclic, with a single source (vertex of in-degree zero) and a single sink (vertex of out-degree zero).  Identify the source and sink.

3b) For a pair of trees 
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 and let 
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let 
[image: image84.wmf]12
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be the distance from 
[image: image85.wmf]1
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 to
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in
[image: image87.wmf]R

(if each arc has length one).  Note that this distance might be infinity.  What is the maximum finite distance between any pair of trees?  Give two trees whose distance matches your bound.

3c) What is the maximum length of a path in
[image: image88.wmf]?

R

 (That is, what is the maximum number of right rotations that can be done one-after-the-other?

In 3b) and 3c) prove the correctness of your answer.    
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